Fourier Transform

The Fourier transform is:

F[f(x)] \equiv \tilde f(\omega)
    = \int_{-\infty}^{\infty} f(x) e^{-i\omega x}\,\d x

F^{-1}[\tilde f(\omega)] = f(x)
    = {1\over2\pi}\int_{-\infty}^{\infty}
    \tilde f(\omega) e^{+i\omega x}\,\d \omega

To show that it works:

F^{-1} F [f(x)]
=
{1\over2\pi}\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty}
    f(x) e^{-i\omega x}\,\d x\right] e^{+i\omega x}\,\d \omega
=
{1\over2\pi}\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty}
    f(x') e^{-i\omega x'}\,\d x'\right] e^{+i\omega x}\,\d \omega
=

=
\int_{-\infty}^{\infty} f(x') \left[{1\over2\pi}\int_{-\infty}^{\infty}
    e^{i\omega (x- x')}\,\d \omega \right] \,\d x'
=
\int_{-\infty}^{\infty} f(x') \delta(x-x') \,\d x'
=f(x)

Laplace Transform

Laplace transform of f(x) is:

L[f(x)] = \int_0^{\infty} f(x) e^{-s x}\,\d x

L^{-1}[\bar f(s)]
= {1\over2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}
    \bar f(s) e^{s x}\,\d s
= \sum_{s_0} \res_{s=s_0} (\bar f(s) e^{s x})

The contour integration is over the vertical line \sigma+i\omega and \sigma is chosen large enough so that all residues are to the left of the line (that’s because the Laplace transform \bar f(s) is only defined for s larger than the residues, so we have to integrate in this range as well). It can be shown that the integral over the left semicircle goes to zero:

\left|\int_\Omega e^{sx}g(s) \d s \right|
=\left|\int_{\pi\over2}^{3\pi\over2} e^{(\sigma + Re^{i\varphi})x}
g(\sigma+Re^{i\varphi})iRe^{i\varphi}\d\varphi\right|
\le

\le R \max_\Omega |g(z)| e^{\sigma x}
    \int_{\pi\over2}^{3\pi\over2}\left| e^{xRe^{i\varphi}}
    \right|\d\varphi
=

= R \max_\Omega |g(z)| e^{\sigma x}
    \int_{\pi\over2}^{3\pi\over2}e^{xR \cos \varphi} \d\varphi
=

= R \max_\Omega |g(z)| e^{\sigma x}
    \int_0^{\pi}e^{-xR \sin \varphi} \d\varphi
=

< {\pi e^{\sigma x}\over x} \max_\Omega |g(z)|

so the complex integral is equal to the sum of all residues of \bar
f(s)e^{sx} in the complex plane.

To show that it works:

L^{-1} L [f(x)]
=
{1\over2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}
    \left[\int_0^{\infty}
    f(x) e^{-s x}\,\d x\right] e^{s x}\,\d s
=
{1\over2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}
    \left[\int_0^{\infty}
    f(x') e^{-s x'}\,\d x'\right] e^{s x}\,\d s
=

=
\int_0^{\infty} f(x') \left[{1\over2\pi i}
    \int_{\sigma-i\infty}^{\sigma+i\infty}
    e^{s (x- x')}\,\d s \right] \,\d x'
=
\int_0^{\infty} f(x') \delta(x-x') \,\d x'
=f(x)

where we used:

{1\over2\pi i}
\int_{\sigma-i\infty}^{\sigma+i\infty} e^{s (x- x')}\,\d s
=
{1\over2\pi i}
    \int_{\sigma-i\infty}^{\sigma+i\infty} e^{s (x- x')}\,\d s
=
{1\over2\pi i}
    \int_{-\infty}^{\infty} e^{(\sigma+i\omega) (x- x')}\,i\d \omega
=

=
{e^{\sigma (x- x')}\over2\pi}
    \int_{-\infty}^{\infty} e^{i\omega (x- x')}\,\d \omega
= e^{\sigma (x- x')}\delta(x - x')
=\delta(x - x')

and it can be derived from the Fourier transform by transforming a function U(x):

U(x) = \begin{cases}
    f(x)e^{-\sigma x} &\text{for $x\ge0$}\cr
    0 &\text{for $x<0$}\cr
    \end{cases}

and making a substitution s = \sigma + i\omega:

L[f(x)] \equiv \bar f(s) = F[U(x)] \equiv \tilde U(\omega)
= \int_{-\infty}^{\infty} U(x) e^{-i\omega x}\,\d x
= \int_0^{\infty} f(x) e^{-\sigma x} e^{-i\omega x}\,\d x
= \int_0^{\infty} f(x) e^{-s x}\,\d x

L^{-1}[\bar f(s)] \equiv f(x) = U(x) e^{\sigma x}
= F^{-1}[\tilde U(\omega)]e^{\sigma x}
= F^{-1}[\bar f(s)]e^{\sigma x}
= F^{-1}[\bar f(\sigma+i\omega)e^{\sigma x}]

= {1\over2\pi}\int_{-\infty}^{\infty} \bar f(\sigma + i\omega)e^{\sigma x}
    e^{i\omega x}\,\d \omega
= {1\over2\pi i}\int_{\sigma-i\infty}^{\sigma+i\infty}
    \bar f(s) e^{s x}\,\d s
= \sum_{s_0} \res_{s=s_0} (\bar f(s) e^{s x})

Where the bar (\bar f) means the Laplace transform and tilde (\tilde U) means the Fourier transform.

Table Of Contents

Previous topic

Residue Theorem

Next topic

Polar and Spherical Coordinates

This Page