Theoretical Physics Reference¶
- 1. Introduction
- 2. Contributors
- 3. Mathematics
- 3.1. Integration
- 3.2. Complex Numbers
- 3.3. Residue Theorem
- 3.4. Fourier Transform
- 3.5. Fourier Transform of a Periodic Function (e.g. in a Crystal)
- 3.6. Discrete Fourier Transform
- 3.7. Fast Fourier Transform (FFT)
- 3.8. Laplace Transform
- 3.9. Hilbert Transform
- 3.10. Periodic Functions
- 3.11. Polar Coordinates
- 3.12. Spherical Coordinates
- 3.13. Argument function, atan2
- 3.14. Multiple Argument Formulas
- 3.15. Delta Function
- 3.16. Distributions
- 3.17. Variations and Functional Derivatives
- 3.18. Dirac Notation
- 3.19. Homogeneous Functions (Euler’s Theorem)
- 3.20. Green Functions
- 3.21. Binomial Coefficients
- 3.22. Double Sums
- 3.23. Triangle Inequality
- 3.24. Gamma Function
- 3.25. Incomplete Gamma Function
- 3.26. Factorial
- 3.27. Double Factorial
- 3.28. Fermi-Dirac Integral
- 3.29. Legendre Polynomials
- 3.30. Spherical Harmonics
- 3.31. Gaunt Coefficients
- 3.32. Wigner 3j Symbols
- 3.33. Multipole Expansion
- 3.34. Hypergeometric Functions
- 3.35. Feynman Parameters
- 3.36. Groups
- 3.37. Wigner D Function
- 3.38. Ordinary Differential Equations
- 3.39. Linear Algebra
- 3.40. Differential Geometry
- 3.41. Operators
- 3.42. Variational Formulation of PDEs
- 4. Classical Mechanics, Special and General Relativity
- 4.1. Gravitation and Electromagnetism as a Field Theory
- 4.2. Classical Mechanics
- 4.3. Relativity
- 4.3.1. Introduction: Why Tensors
- 4.3.2. High School Formulation
- 4.3.3. College Formulation
- 4.3.4. Differential Geometry Formulation
- 4.3.5. Metrics
- 4.3.6. Conclusion About Metric
- 4.3.7. Einstein’s Equations
- 4.3.8. Continuous Distribution of Matter
- 4.3.9. Obsolete Section
- 4.3.10. Inertial frames
- 4.3.11. Lorentz Group
- 4.3.12. O(4) Group
- 4.3.13. Proper Time
- 4.3.14. FAQ
- 4.3.15. Questions Without Answers (Yet)
- 5. Classical Electromagnetism
- 6. Thermodynamics and Statistical Physics
- 7. Fluid Dynamics
- 8. Quantum Field Theory and Quantum Mechanics
- 8.1. Introduction
- 8.2. Standard Model
- 8.3. Quantum Electrodynamics (QED)
- 8.4. Quantum Mechanics
- 8.5. Systematic Perturbation Theory in QM
- 8.6. Appendix
- 8.7. Examples
- 8.8. Radial Schrödinger and Dirac Equations
- 8.9. Density Functional Theory (DFT)
- 8.9.1. Many Body Schrödinger Equation
- 8.9.2. The Hohenberg-Kohn Theorem
- 8.9.3. The Kohn-Sham Equations
- 8.9.4. The XC Term
- 8.9.5. Total Energy
- 8.9.6. XC Approximations
- 8.9.7. Radial DFT Problem
- 8.9.8. DFT As a Nonlinear Problem
- 8.9.9. Thomas-Fermi-Dirac Theory
- 8.9.10. Orbital Free Density Functional Theory
- 8.9.11. References
- 8.10. Ideal Fermi Gas
- 8.11. Hartree-Fock (HF) Method
- 8.11.1. Derivation
- 8.11.2. Roothaan Equations For Closed Shell Systems
- 8.11.3. Two Particle Matrix Element
- 8.11.4. General Matrix Elements in Spherical Symmetry
- 8.11.5. Slater Type Orbitals (STO)
- 8.11.6. Gaussian Type Orbitals (GTO)
- 8.11.7. Exchange Integral in Spherical Symmetry
- 8.11.8. Occupation Numbers
- 8.11.9. Hartree Screening Functions
- 8.11.10. Hartree Potential in Spherical Symmetry
- 8.11.11. Nonlocal Exchange Potential in Spherical Symmetry
- 8.11.12. Radial Hartree-Fock Equations
- 8.11.13. Total Energy
- 8.11.14. FEM
- 8.11.15. 4-Index Transformation
- 8.11.16. Green’s Functions
- 8.12. Projector Augmented-Wave Method (PAW)